1,143 research outputs found

    Unified Analysis of Collapsible and Ordered Pushdown Automata via Term Rewriting

    Full text link
    We model collapsible and ordered pushdown systems with term rewriting, by encoding higher-order stacks and multiple stacks into trees. We show a uniform inverse preservation of recognizability result for the resulting class of term rewriting systems, which is obtained by extending the classic saturation-based approach. This result subsumes and unifies similar analyses on collapsible and ordered pushdown systems. Despite the rich literature on inverse preservation of recognizability for term rewrite systems, our result does not seem to follow from any previous study.Comment: in Proc. of FRE

    Reachability analysis of first-order definable pushdown systems

    Get PDF
    We study pushdown systems where control states, stack alphabet, and transition relation, instead of being finite, are first-order definable in a fixed countably-infinite structure. We show that the reachability analysis can be addressed with the well-known saturation technique for the wide class of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are able to give concrete complexity upper bounds. We show ample applicability of our technique by presenting several concrete examples of homogeneous structures, subsuming, with optimal complexity, known results from the literature. We show that infinitely many such examples of homogeneous structures can be obtained with the classical wreath product construction.Comment: to appear in CSL'1

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    Multipebble Simulations for Alternating Automata - (Extended Abstract)

    Get PDF
    Abstract. We study generalized simulation relations for alternating Büchi automata (ABA), as well as alternating finite automata. Having multiple pebbles allows the Duplicator to “hedge her bets ” and delay decisions in the simulation game, thus yielding a coarser simulation relation. We define (k1, k2)-simulations, with k1/k2 pebbles on the left/right, respectively. This generalizes previous work on ordinary simulation (i.e., (1, 1)-simulation) for nondeterministic Büchi automata (NBA) in [3] and ABA in [4], and (1, k)-simulation for NBA in [2]. We consider direct, delayed and fair simulations. In each case, the (k1, k2)simulations induce a complete lattice of simulations where (1,1)- and (n, n)simulations are the bottom and top element (if the automaton has n states), respectively, and the order is strict. For any fixed k1, k2, the (k1, k2)-simulation implies (ω-)language inclusion and can be computed in polynomial time. Furthermore, quotienting an ABA w.r.t. (1, n)-delayed simulation preserves its language. Finally, multipebble simulations yield new insights into the Miyano-Hayashi construction [10] on ABA.

    Bidimensional Linear Recursive Sequences and Universality of Unambiguous Register Automata

    Get PDF
    We study the universality and inclusion problems for register automata over equality data. We show that the universality and the inclusion problems can be solved with 2-EXPTIME complexity when the input automata are without guessing and unambiguous, improving on the currently best-known 2-EXPSPACE upper bound by Mottet and Quaas. When the number of registers of both automata is fixed, we obtain a lower EXPTIME complexity, also improving the EXPSPACE upper bound from Mottet and Quaas for fixed number of registers. We reduce inclusion to universality, and then we reduce universality to the problem of counting the number of orbits of runs of the automaton. We show that the orbit-counting function satisfies a system of bidimensional linear recursive equations with polynomial coefficients (linrec), which generalises analogous recurrences for the Stirling numbers of the second kind, and then we show that universality reduces to the zeroness problem for linrec sequences. While such a counting approach is classical and has successfully been applied to unambiguous finite automata and grammars over finite alphabets, its application to register automata over infinite alphabets is novel. We provide two algorithms to decide the zeroness problem for bidimensional linear recursive sequences arising from orbit-counting functions. Both algorithms rely on techniques from linear non-commutative algebra. The first algorithm performs variable elimination and has elementary complexity. The second algorithm is a refined version of the first one and it relies on the computation of the Hermite normal form of matrices over a skew polynomial field. The second algorithm yields an EXPTIME decision procedure for the zeroness problem of linrec sequences, which in turn yields the claimed bounds for the universality and inclusion problems of register automata.Comment: full version of the homonymous paper to appear in the proceedings of STACS'2
    corecore